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ABSTRACT

microRNAs (miRNAs) are a class of ∼22nt non-
coding RNAs that potentially regulate over 60% of hu-
man protein-coding genes. miRNA activity is highly
specific, differing between cell types, developmental
stages and environmental conditions, so the iden-
tification of active miRNAs in a given sample is of
great interest. Here we present a novel computa-
tional approach for analyzing both mRNA sequence
and gene expression data, called MixMir. Our method
corrects for 3’ UTR background sequence similar-
ity between transcripts, which is known to corre-
late with mRNA transcript abundance. We demon-
strate that after accounting for kmer sequence sim-
ilarities in 3’ UTRs, a statistical linear model based
on motif presence/absence can effectively discover
active miRNAs in a sample. MixMir utilizes fast soft-
ware implementations for solving mixed linear mod-
els, which are widely used in genome-wide associ-
ation studies (GWASs). Essentially we use 3’ UTR
sequence similarity in place of population cryptic re-
latedness in the GWAS problem. Compared to simi-
lar methods such as miReduce, Sylamer and cWords,
we found that MixMir performed better at discovering
true miRNA motifs in three mouse Dicer-knockout
experiments from different tissues, two of which
were collected by our group. We confirmed these
results on protein and mRNA expression data ob-
tained from miRNA transfection experiments in hu-
man cell lines. MixMir can be freely downloaded from
https://github.com/ldiao/MixMir.

INTRODUCTION

microRNAs (miRNAs) are small (∼22nt) non-coding
RNAs that post-transcriptionally regulate the expression
of protein-coding genes (1). Their impact on gene regula-

tion is the subject of intense study, with over 60% of all
human genes estimated to be regulated by miRNAs (2)
and some miRNAs potentially regulating hundreds of genes
(3,4). Thus, computational prediction of active miRNAs
and their targets from gene expression data in a particular
cellular context is of significant interest, leading to the de-
velopment of a number of algorithms that analyze miRNAs
jointly in the context of sequence and gene expression (5–9).

Animal miRNAs can bind to their targets in a vari-
ety of ways, centering on a 6nt region at the 5’ end of
the mature miRNA (bases 2–7) called the ‘seed’ region
(4). Most computational target prediction methods make
use of exact Watson–Crick pairing of the seed region, as
well as other features such as evolutionary conservation
(10,11), co-occurrence of miRNA-binding sites (12) and
RNA-binding protein binding sites (13), messenger RNA
(mRNA), miRNA, and Argonaute expression levels (5–
7,9,13), 3’ UTR sequence composition and other mRNA
sequence features (5,6,12,13), and protein interaction data
(14). A commonly-used computer program for analyzing
miRNAs from both gene expression and sequence data
is miReduce (7), which is based on the REDUCE algo-
rithm for predicting transcription factor motifs (15). Two
other published programs, Sylamer (5) and cWords (6), also
solve the same problem while explicitly correcting for back-
ground sequence composition. The context of the miRNA-
binding site is known to affect binding efficacy (12), either
through mRNA secondary structure or by providing bind-
ing sites for other post-transcriptional regulators. Back-
ground sequence similarity is also correlated with paralogy
and therefore similarity between transcriptional programs.
Note that it is not trivial in mammalian genomes to identify
promoter or enhancer regions in order to directly correct for
transcriptional control of protein coding genes.

Here we present MixMir, a novel method for miRNA
motif discovery which, like Sylamer and cWords, explic-
itly corrects for background sequence composition, but
does so using a mixed linear model (MLM) framework. In
our MixMir implementation, we borrowed computational
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methods from the genome-wide association study (GWAS)
field for efficiently solving large systems of MLM equations.
Our method uses the MLM to correct for similarities be-
tween 3’ UTR sequences, analogous to the way MLMs are
used to correct for cryptic relatedness between individu-
als in GWASs, where such artifacts can lead to high false-
positive associations (16–18).

We demonstrate the utility of MixMir on a gene expres-
sion dataset in mouse wild-type (WT) and Dicer-knockout
(KO) CD4+25- T-cells (hereafter called T conv cells). We
found that MixMir performed better than miReduce, Sy-
lamer and cWords at finding miRNAs annotated in the
miRBase database (19) and highly expressed miRNAs in
this cell type. We confirmed our results on two other mouse
Dicer-KO experiments from embryonic stem (ES) cells and
adrenal gland, and miRNA transfection experiments in hu-
man cell lines, both for quantitative proteomics data and
microarray data (20). Thus, we expect MixMir to be of prac-
tical use in helping experimentalists focus attention on the
most important miRNAs in a given sample. Importantly,
the most active miRNAs (i.e. those that play the biggest role
in controlling mRNA expression in a particular cell type)
are positively but imperfectly correlated with miRNA ex-
pression levels in the cell. Thus, it is not sufficient to sim-
ply assay miRNA expression levels in the cell to identify the
most active miRNAs (see Discussion). Another application
where miRNA motif finding is often used in the lab is sim-
ply to confirm that a transfection or knockdown experiment
worked correctly.

More broadly, our study suggests that MLMs are a pow-
erful tool for motif discovery and highlight the importance
of correcting for cryptic similarity in background sequence
composition, an observation that might be useful in other
motif-finding problems as well. Our MixMir software is
open source and freely available from https://github.com/
ldiao/MixMir.

MATERIALS AND METHODS

Experimental methods for obtaining mRNA and miRNA ex-
pression data for Dicer-KO T conv cells

Mice carrying a floxed Dicer allele in combination with
CD4Cre transgene on a mixed C57BL/129 background (21)
were maintained under specific pathogen-free conditions.
Peripheral CD4+CD25- T cells were sorted on a FACS
ARIA (Becton Dickinson) from 6–8-week-old mice and
RNA extracted using RNAbee (AMSBio) according to the
manufacturer’s instructions. Hundred nanograms of RNA
was used to interrogate the GeneChip Mouse Gene 1.0 ST
Array (Affymetrix). We obtained log fold changes in gene
expression for 24 601 mRNA transcripts between WT and
Dicer-KO mouse CD4+ CD25- T cells.

We obtained two datasets of miRNA expression for
CD4+CD25- T cells from independent sources using differ-
ent technologies. First, from the same cells from which we
obtained our mRNA microarray expression data, we also
obtained comparative miRNA expression data between
CD4+CD25+ T-cells and CD4+25- T-cells from Cobb et
al. (22), who studied the differences in miRNA expression
profiles for the two types of cells. The authors performed an
miRNA microarray analysis with probes for 173 miRNAs

Figure 1. Percentile-percentile (PP) plot comparing the performance of
MixMir with five different values of the kmer length k, which defines the
way in which the relationship matrix was constructed. The observed P-
values are found on the y axis and the expected P-values are found on the
x axis. When P-values are correctly estimated, we would expect the ob-
served and expected P-values to be similar, thus approaching the y = x
line. Here LM Bin represents the categorical linear model, and MixMirk
represents results from MixMir with kinship matrix estimated using kmers.
We found that higher values of k were better at correcting for skewness in
the PP plots (i.e. false-positive predictions).

from miRBase. Of these, we take the top 20 differentially
expressed to be true, ‘active’ miRNAs, as reported by Cobb
et al. in Figure 2.

To corroborate these results, we also used miRNA expres-
sion data from C57BL/6 mice determined by the nCounter
miRNA expression assay kit (Nanostring Technologies),
from Sommers et al. (23). The authors validated the Nanos-
tring nCounter expression results with Exiqon microarrays
and Taqman reverse transcription-quantitative-polymerase
chain reaction (PCR) assays. Ninety two probes corre-
sponding to 86 miRNAs in miRBase were evaluated. Of
these, we took the top 21 highly expressed for experimen-
tal validation of our predictions, corresponding to the most
highly expressed miRNAs presented by Sommers et al. in
Supplementary Figure S1.

Experimental methods for obtaining mRNA expression data
for Dicer-KO mouse ES cells

The ES cells were derived and described in Nesterova
et al. (46). ES cell lines were maintained on a feeder
layer (mitomycin-inactivated primary mouse embryonic fi-
broblasts) in Dulbecco’s modified Eagle’s medium sup-
plemented with 10% fetal calf serum (Autogen Bioclear),
7% Knockout Serum Replacement, 2 mM L-glutamine,
1× non-essential amino acids, 50 �M 2-mercaptoethanol,
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Figure 2. Truncated receiver operating characteristic (ROC) curves comparing the six methods examined and their performance in ranking motifs from
miRNAs in miRBase. Dotted line represents expected random performance. Top left number indicates the area under the curve for each method. Left:
results when allowing for offset seed sequence matching, Right: results when restricting to exact seed matches only. (A) ROC curve for the top 20 motifs
returned by each method. (B) ROC curve for the top 50 motifs returned by each method.

50 �g/ml penicillin/streptomycin (all from Invitrogen)
and leukemia inhibitory factor (LIF)-conditioned medium,
made in house, at a concentration equivalent to 1000 U/ml.
Cells were grown at 37◦C in a humid atmosphere with 5%
CO2. Microarray methods were the same as for the T conv
cells as described above. Sinkkonen et al. (24) showed that in
mouse ES cells, transfection of miR-290 family miRNAs is
able to rescue defects due to Dicer deficiency. This strongly

suggests that the primary active miRNAs in these cells be-
long to the miR-290 family.

pSILAC and microarray data for miRNA transfection exper-
iments

In addition to our Dicer-KO data, we also tested MixMir on
pSILAC and mRNA microarray data from miRNA trans-
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Table 1. AU content of motifs discovered by the different methods

Method % AU in motif

LM Bin 88.67
miReduce 43.33
Sylamer 58.33
cWords2 81.67
MixMir6 53.67

Simple linear models and cWords2 returned motifs with very high AU con-
tent. Both MixMir and miReduce had substantially lower average AU con-
tent, closer to the background 3’ UTR base composition.

fection experiments from Selbach et al. (20). The authors
performed transfections by synthetic miRNAs and mock
transfections in human HeLa cells for miRNAs let-7b, miR-
1, miR-155, miR-16 and miR-30a. The amount of protein
synthesis was given by the log of the ratio of protein synthe-
sized in the miRNA-transfected cells divided by the mock
transfection between 8 and 32 h post transfection. Microar-
ray analyses were performed with the Affymetrix Human
Genome U133 Plus 2.0 chip.

We mapped the pSILAC Uniprot protein IDs to Refseq
transcript IDs by downloading an ID mapping table from
the Uniprot website. For the different transfection experi-
ments, there were slightly different numbers of proteins with
expression values, resulting in a range of the number of pro-
tein expression data points with corresponding 3’ UTR se-
quences from ∼3000 to 3600 across all the transfection ex-
periments.

mRNA and miRNA expression data for Dicer-KO mouse
adrenal cortex cells

We also obtained mRNA and miRNA expression data for
Dicer-KO adrenal cortex tissue from mouse embryos at
stages E15.5 and E16.5 from a study by Krill et al. (25).
Sf1-Cre mice were crossed with mice carrying a floxed Dicer
allele to produce Sf1-Cre/Dicerlox/lox mice. Embryos were
harvested at E15.5 and E16.5 and the adrenals from each
were collected. A total of four control and four Dicer-
KO biological replicates were obtained for each time point.
Affymetrix Mouse 430 v2.0 gene expression arrays were
used for hybridization. ABI miRNA OpenArray was used
for miRNA expression analysis. These arrays are able to
target 750 miRNAs. We took the top 25 highly expressed
miRNAs for E15.5, the top 35 highly expressed miRNAs
for E16.5 and the top 15 miRNAs that are found highly ex-
pressed at both time points, in line with Figure 4 and Table
1 in Krill et al. (25).

Processing of the 3’ UTR and miRNA sequence data

We downloaded all 26 845 mouse RefSeq gene 3’ UTR se-
quences and 40 571 human 3’ UTR sequences from the
UCSC Genome Browser (version mm10 and hg19, respec-
tively) (26,27). We removed all 3’ UTRs of length <10
nt and retained the longest isoform if there were multiple
3’UTR isoforms. In total, we were able to associate 17 988
unique UTR sequences to their microarray expression val-
ues for the mouse Dicer-KO dataset, and 22 266 unique
UTR sequences to their microarray expression values for
each of the Selbach et al. miRNA transfection experiments.

We downloaded 1908 mature mouse miRNA sequences
corresponding to ∼1200 distinct 6mer seeds and 2578 ma-
ture human miRNA sequences corresponding to ∼1500 dis-
tinct 6mer seeds from the miRBase database (release 20)
(19).

Linear regression model of miRNA targeting

A naive linear model formulation of miRNA targeting is to
regress the log fold change in gene expression against the
presence/absence of the miRNA motif in the 3’ UTR:

yi = β0 + β1miRNAi, j+ ∈i j

where yi is the log fold change in expression level of mRNA
i and miRNAi,j is the presence/absence variable that indi-
cates if the motif for miRNA j appears in the 3’ UTR of
mRNA i, the β variables are constants and ∈ij is a Gaus-
sian error term. We applied this simple linear model for all
potential miRNA seeds (i.e. the set of all 4096 hexamers)
across all mRNAs. The null hypothesis is that there is no
miRNA effect, i.e. β1 = 0. If the deviation of the inferred β1
from 0 is statistically significant, then we say that the pres-
ence of the motif for miRNA j is significant.

MLM of miRNA targeting

Our MLM builds on the simple linear model above by
adding an additional random effect to account for pairwise
background sequence similarity between 3’ UTRs. A ran-
dom effect is a factor that can be modeled as being drawn
from a probability distribution and is commonly used to
model hierarchical structures in data (28). Here we take the
set of all background kmer compositions of all 3’ UTRs as
the distribution and consider each 3’ UTR to be a sample
from it. Specifically, our MLM is formulated as:

yi = β0 + β1miRNAi, j + αi+ ∈i j ,

where αi is the random effect for the ith mRNA and
miRNAi, j is the binary variable representing the presence
or absence of the hexamer motif associated with miRNA j
in individual i. Rewriting the above in matrix notation gives:

y = Mβ + Zα+ ∈
Var(α) = σ 2

g K
Var(∈) = σ 2

e I

Here y represents the T × 1 vector of mRNA expression
changes, where T is the number of mRNAs, M is a binary
diagonal matrix indicating the presence or absence of a par-
ticular miRNA, i.e. Mj, j = miRNA j and Z is an incidence
matrix (in our case Z = IT). The most important part of the
model is α, a vector of random effects, which incorporates a
constraint on the covariance matrix via the T × T relation-
ship matrix K, which we set to be the pairwise relationship
matrix between mRNAs, as discussed below. ∈ and α are
multivariate Gaussians with mean 0. σ 2

g and σ 2
e are called

the variance components of the model.
We let Ki j = cor(kmeri , kmer j ), the pairwise Pearson

correlation for the fractional kmer counts between mRNA
i and mRNA j. The fractional kmer counts are obtained by
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taking the kmer counts and scaling by the sum of the total
number of motif counts:

kmeri = {ni1/S, ni1/S, ni2/S, . . . , ni4k/S}
where nik is the number of times the motif mk appears in the
3’ UTR of mRNA i and S = ∑

nik is the sum of the motif
counts. We tested various kmer lengths in the construction
of the relationship matrix in the range k = 2, . . . , 6.

We used FaST-LMM v2.07 (29) to solve for the restricted
maximum likelihood solution for the MLMs. It is an ‘exact’
MLM solver in the sense that other fast solvers commonly
used in GWASs often make simplifying assumptions spe-
cific to GWAS applications that are often not appropriate
in the miRNA context. Briefly, FaST-LMM reparamater-
izes the optimization problem in the MLM to be a function
of only a single parameter δ and then performs a spectral de-
composition of the relatedness matrix once that can be used
to test all motifs (or single nucleotide polymorphisms in the
GWAS problem).

Overview of the miReduce, Sylamer and cWords algorithms

miReduce takes the log fold change of gene expression be-
tween two conditions as input and outputs significant mo-
tifs and their associated miRNAs (7). The underlying al-
gorithm is a forward stepwise linear regression, an iterative
procedure where at each iteration the motif that minimizes
the residual error in a simple linear model is selected and the
residuals are taken as the new dependent variable for the fol-
lowing iteration. This continues until a significance thresh-
old set by the user is exceeded. Forward stepwise linear re-
gression procedures are known to suffer from many statisti-
cal problems, so the P-values from such procedures should
be taken only as a general guideline (30). In this work, we
set a liberal cutoff of P = 0.50 for miReduce for the purpose
of comparing the miReduce motifs with the linear models
described above.

We ran Sylamer via its web-based implementation, Sy-
larray (5,31), because the Sylamer code did not collapse
low complexity and redundant sequences, and preprocess 3’
UTR transcript variants which are implemented in Sylar-
ray and are important components of the overall Sylamer
method. Given a gene list of N genes ranked in descending
order of differential gene expression, the Sylamer algorithm
computes over- and under-representation of motifs in the
top T genes versus the remaining N - T in the list, as T is
incremented in bin sizes of b. The hypergeometric distribu-
tion is used to determine the significance of the enrichment
or depletion of a particular motif m in the top T genes, com-
pared to the rest of the gene list, given that the total number
of genes containing the motif in its 3’ UTR is Km. Sylamer
corrects for background sequence composition by estimat-
ing expected motif counts based on the sequence composi-
tion of shorter motifs within each bin and using these values
in place of Km (5). We use the default parameters for Sylar-
ray, except we select the ‘all words’ option, which searches
the space of all possible 6-, 7-, and 8mer motifs instead of
just those corresponding to known miRNAs. To obtain a
full list of ranked motifs, we downloaded the enrichment
table for each analysis and ranked motifs by their most sig-

nificant P-value across all bins (see Sylamer manuscript for
a full description of Sylamer defines statistical significance).

cWords (6) corrects for background sequence composi-
tion using a kth order Markov model. cWords estimates
the expected probability of seeing a particular word based
on the probability of seeing shorter words within the same
UTR sequence, instead of looking through bins of mo-
tifs. The probability that a motif is enriched is calculated
using the binomial distribution and the negative log of
the probabilities is plotted to show enrichment across all
ranked genes (genes ranked by increasing differential ex-
pression). Background enrichment values are computed as
a sum of all such log probabilities, called the ‘running sum’,
and enriched motifs are those that have statistically higher
sums than the expected maximum value. We downloaded
cWords from https://github.com/simras/cWords and ran it
with word length = 6 and order of Markov background
nucleotide model in the range 2–6. The Markov model in
cWords can correct for kmers of length up to the motif
length being analyzed. Thus, as we are analyzing hexam-
ers, we can use this model to correct for background kmers
with k ≤ 6. In principle, higher values of k should give more
correction, but in practice the amount of data available for
estimating the Markov model is limited by the length of the
3’ UTR sequences (see Results, Supplementary Table S2).
Thus, we found that correcting for a background kmer of
length k = 2 produced the best results, which is entirely con-
sistent with the authors’ recommendation to set k between
1 and 3.

Both Sylamer and cWords return results separated into
those motifs being either enriched or depleted. For both
methods, we pooled the results to be more comparable with
the other models, as we are looking for any significant mo-
tifs regardless of the direction of effect. We reserve the di-
rection of the effect as an independent test of the accuracy
of the methods later.

RESULTS

Comparison of different MixMir and cWords parameters on
the T conv microarray data

We started by testing five different settings of the kmer
length in MixMir on the mouse Dicer-KO T conv mi-
croarray dataset (Methods). MixMir uses a linear model of
miRNA targeting, similar to previous models such as miRe-
duce, but adds an additional relationship matrix in a MLM
framework to correct for background sequence composi-
tion of 3’ UTRs (Methods). The kmer length determines the
construction of the relationship matrix in MixMir (Meth-
ods). We tested values of k from 2 to 6 and refer to these
models as MixMir2 to MixMir6. For values of k above 6,
the estimate of the correlation matrix became inaccurate be-
cause of the limited total amount of 3’ UTR sequence in the
genome and the running time of the implementation was
slow, so we did not consider higher values of k further (Dis-
cussion).

The value of k had a strong effect on the similarity of
MixMir to the baseline linear model we tested (Methods),
where similarity was defined by the Pearson correlation of
the P-values of the motifs tested. Namely, the similarity
of MixMir to the linear model dropped as k increased in

https://github.com/simras/cWords
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MixMir. These patterns were similar if we computed the
Pearson correlation of motif ranks instead of motif P-values
(Supplementary Table S1).

We compared percentile-percentile (PP) plots of all of the
MixMir models to each other and to the linear model, to de-
termine how skewed the P-values were across all motifs for
each method (Figure 1). Under the null hypothesis of no as-
sociation, we expect the curves to fall on the diagonal line
y = x, so the presence of skew away from this line is indica-
tive of false-positive associations. This is commonly used in
GWASs to determine whether or not a model properly cor-
rects for the presence of population structure, which is evi-
denced by an increased number of artificially low P-values
(16–18).

These plots clearly showed that the MixMir model
that performed the most correction of the P-values was
MixMir6. Note that this analysis implicitly assumes that
there are relatively few highly active miRNAs in any par-
ticular cell type compared to the total number of possible
miRNA seed sequences (in this case 4096 hexamers), an as-
sumption we believe to be generally true biologically (24).
Therefore, we selected MixMir6 to represent the MLM re-
sults in comparison with the other methods in our analysis.

The plots above assume that the P-values returned by the
MLM are properly estimated. To verify this, we performed
20 randomizations of the sequence and expression data, and
ran MixMir on the randomized data for k = 2..6. P-values
obtained from the randomized data exactly followed the di-
agonal line expected under the null hypothesis line, suggest-
ing that our P-values are indeed properly estimated (Sup-
plementary Figure S1).

We initially tested k = 2–6 for cWords to perform model
selection as we did with MixMir, which we refer to as
cWords2 to cWords6. The authors recommended setting
k = 1–3 for cWords, presumably because of the limited
amount of sequence in 3’ UTRs (Methods). The resulting
PP plots showed that there was a significant discrepancy be-
tween observed and expected P-values, similar to the sim-
ple linear models, suggesting a relatively high false-positive
rate for cWords on this dataset, or perhaps that P-values are
incorrectly estimated. To first test this possibility, we also
performed 20 randomizations of the data as above for use
with cWords. We found that the randomized data resulted
in observed P-values that were much higher than expected
(i.e. close to 1), suggesting that the P-values are not properly
estimated in this particular dataset. Furthermore, little im-
provement was gained by using any kmer background cor-
rection as judged by PP plots (Supplementary Figure S2),
so we did not use this as a criterion for model selection,
and relied instead on prediction performance on the T conv
dataset. We saw a large drop in performance for k = 5 and
k = 6, with many fewer matches to miRBase miRNAs and
T conv cell highly expressed miRNAs than for k = 2, 3 and
4. This is entirely consistent with the authors’ recommen-
dation and our observation above that there is insufficient
3’ UTR sequence data to train higher orders of the Markov
model. Thus, for further analyses, we retained just cWords2
as representative of the algorithm.

MixMir had the highest accuracy according to ROC curves
on the T conv data

To compare MixMir against the previous motif discovery
methods, we tested a total of five models: the simple linear
model based on motif presence/absence (LM Bin), which
we take as our baseline method, miReduce, cWords2, Sy-
lamer and MixMir6. For the linear models, all possible mo-
tifs were ranked by P-value; for miReduce, we set the P-
value cutoff to be 0.5, resulting in 57 motifs returned (see
Methods for a discussion of this choice of P-value cutoff).
Sylarray returned 885 words with P-value <0.01, so these
were ranked according to P-value. The motifs in the cWords
results are ranked according to a Z-score (6), which we
found were not consistent with the P-value, so we retained
the original Z-score ranking, which produced better results.

We compared the significant hexamer motifs found by
each method to miRNAs in miRBase (Methods). We per-
formed two matching procedures to the miRNAs. First,
in our stringent matching criterion, we considered a hex-
amer a match to a particular miRNA only if it matches
the seed sequence of a mature miRNA. Second, in our re-
laxed matching criterion, we allowed the hexamers to match
to any of three positions starting at nucleotides 1, 2 or 3
from the 5’ end of the mature miRNA. We included off-
set match positions 1 and 3 in order to include all possible
types of marginal binding site matches (1), including the po-
tential for extensive complementarity through nts 1–8. This
relaxed criterion also allows for shifts in the discovered mo-
tifs, which are common in practical applications of motif-
finding algorithms to biological data. In general, we expect
to see more false positives when including matches to offset
seed sequences, so for all comparisons we considered both
the results from the stringent and the relaxed matching cri-
terion. Additional A1 type site matches (i.e. a match in the
first position to an A instead of the complementary base)
are discussed in the Supplementary Note.

We present results for the two matching criteria using
truncated receiver operating characteristic (ROC) curves
and analyze the results by computing an area-under-the-
curve (AUC) value for each curve (Figure 2). Briefly, we
constructed the ROC curves by taking the top 20 and 50
ranked motifs of each method, with true positives taken to
be matches to any miRNA in miRBase (see Supplementary
Note for details). These truncated ROC curves are exactly
a close-up of the bottom left hand corner of an ROC curve
over all possible results. We chose to truncate the full ROC
curve, which is typically constructed over all possible 6mer
motifs, both because the methods did not return the same
number of predictions and most importantly because we be-
lieve that focusing attention on only the top motifs is a more
biologically meaningful comparison since only a few motifs
are likely to be biologically relevant (i.e. only a small frac-
tion of all possible miRNAs in the database are actually ex-
pressed in a cell (24)). It is important both that truncating
the ROC curve does not change the ranking of the methods
and that we believe our results are robust in that the ROC
curves for MixMir dominate the other curves over essen-
tially the entire range of sensitivity settings (Figure 2). We
caution that the truncated AUC value should not be inter-
preted as a typical AUC with a baseline value of 0.5 for a
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random method. Instead, we plot in our curves a baseline
expected value for a random predictor, given the number of
motifs being plotted and the number of possible true posi-
tives, to which the other AUC values may be compared.

In addition to the truncated ROC curve, we present a
precision-rank plot for comparison (Supplementary Figure
S4). As their names indicate, precision-rank curves plot the
precision of each method at each rank. One benefit of such
a curve is that it allows us gauge performance improvement
by MixMir. To do this, we performed 20 bootstraps by sam-
pling 80% of the size of the original data, and computed the
precision at each rank (Supplementary Figure S5). In Sup-
plementary Figures S4 and S5, we see that MixMir retains
higher precisions in the top predictions than other methods
analyzed.

We present both truncated ROC curves for relaxed mo-
tif matching as well as for stringent motif matching (Fig-
ure 2). We found that the AUC value for the simple linear
model was lower than the expected baseline in the top 20
and 50 motifs, and it found fewer miRNAs than miReduce,
Sylamer, cWords2 and MixMir6. cWords2, Sylamer and
miReduce were comparable in performance in both window
sizes of N = 20 and N = 50 foremost motifs. All four of those
methods performed worse than MixMir6, which was more
accurate over almost the entire range of sensitivity values.
This effect was more noticeable when we used the strict mo-
tif matching criterion to position 2 only in the top 50 motifs.
These results suggest that MixMir more accurately identi-
fies motifs corresponding to the exact miRNA seed region.
The top 50 motifs and whether they match to miRNAs in
miRBase are given in Supplementary Table S4.

Validation of our computational results using experimental
datasets of miRNA expression

As discussed above, one issue with the above analysis is
that miRNAs are generally tissue-specific (32), and so com-
paring the predicted motifs to all miRNAs in miRBase,
while informative, may not be the most biologically mean-
ingful representation of their performance. We therefore
further validated our results using miRNA expression lev-
els in CD4+ T cells determined in two independent ex-
periments by Cobb et al. (22) and Sommers et al. (23).
These two experiments were conducted using different tech-
nologies, the latter measuring miRNA expression using
the nCounter system (Nanostring Technologies). The Cobb
et al. data compared miRNA expression profiles between
CD4+CD25- and CD4+CD25+ T-cells. This experiment
has the benefit of being performed in the same laboratory
and on the same WT T conv cells from which we obtained
the mRNA microarray data used in our analysis

Several, but not all, of the most highly expressed miRNAs
in each of the two datasets overlapped. Notably, the let-
7 family (consisting of let-7b, let-7c and let-7d), miR-30b,
miR-26b, miR-142-3p and miR-15a are among the miR-
NAs found to be expressed in T conv cells in both datasets.
This is consistent with differences between the studies, in-
cluding the particular labs, quantification technologies and
the comparison between two cell types in the case of the
Cobb et al. data.

We considered the top 20 highly expressed miRNAs
found in Cobb et al. and the top 21 miRNAs found in Som-
mers et al. (Methods). These results can be found in Supple-
mentary Table S3. In general, we found that while there was
clearly a significant overlap between highly expressed and
active miRNAs, relatively few of the highly expressed miR-
NAs were also found to be active by the methods we tested.
For example, of the top 10 motifs returned, MixMir identi-
fied three exact seed sequences corresponding to highly ex-
pressed miRNAs. miReduce also performed well, but not
as accurately (Supplementary Tables S3 and S4). cWords
found more highly expressed miRNAs than the simple lin-
ear model, but they are ranked further down the list than
either miReduce or MixMir6. Of the discovered highly ex-
pressed miRNAs, miR-142 (both 3p and 5p) is particularly
interesting as it has previously been found to be highly ex-
pressed in T conv cells and it plays a significant biological
role in regulating cAMP (33). miR-142-3p was found in the
Cobb et al. data and was discovered by both miReduce and
MixMir6. These results suggest that miRNA motif finding
algorithms can play a significant role in identifying the most
biologically active miRNAs in a sample and that simply
measuring miRNA expression levels is insufficient to do so.

Overall, MixMir ranked true motifs higher than other
methods, while the simple linear model and cWords found
fewer matches to miRNAs expressed in this cell type (Sup-
plementary Tables S3 and S4). These results are consis-
tent with our previous analysis of the ROC curves on the
full miRBase miRNA dataset. These results suggest that
MixMir tends to rank true miRNAs higher than other
motif-finding methods, an important consideration for ex-
perimental groups that might only have the resources to val-
idate a few top candidate miRNAs. It also shows that we
were able to discover biologically meaningful results in our
mouse Dicer-KO T conv dataset.

MixMir and miReduce correct for AU bias in the motifs dis-
covered

It is known that there is often an AU bias in computation-
ally discovered motifs when using microarray data (34). The
AU content in the 3’ UTRs used in our analyses was 55.9%,
while the average AU content in the miRNA seed sequences
from miRBase was 48.8%. However, the motifs discovered
by the simple linear model had very high average AU con-
tent, suggesting that their high false-positive rate was par-
tially due to discovering elements representing the AU-rich
background sequence (Table 1). MixMir6 motifs had aver-
age AU content similar to that in the background 3’ UTR
sequence, suggesting that the correlation matrix component
of MixMir successfully corrected for the AU bias. Consis-
tent with this idea, as we altered the correlation matrix used
in MixMir from k = 2 to k = 6, we observed a linear de-
crease in the average AU content of motifs as k increases (see
Supplementary Table S5). Sylamer showed a similar degree
of correction. The miReduce results had an even lower aver-
age AU content than the background 3’ UTRs. cWords, on
the other hand, had motif AU composition similar to that
of the simple linear model, which was very high and was
not significantly changed by altering the value of k (Sup-
plementary Table S5). Taken together, these results showed
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that the simple linear model suffered from high AU bias, but
this bias was corrected by miReduce, Sylamer and MixMir.
Although miReduce does not have an explicit correction for
3’ UTR base composition, it likely implicitly performs this
correction by finding a motif highly correlated with back-
ground composition and then finding the residuals with re-
spect to that motif to identify the remaining motifs. We
observed this phenomenon in our data in practice, where
miReduce often found an AU-rich motif as the most signif-
icant motif. As described in (Methods), Sylamer likely re-
moves the AU rich motifs as a separate preprocessing step,
unlike the other methods. We discuss the possible reasons
for AU bias in the Discussion section.

MixMir corrects for 3’ UTR length and the discovered motifs
are enriched for positive effects

We expect the coefficient of the fixed effect (i.e. the motif ef-
fect) to be positive if the motif represents the seed sequence
of an active miRNA since miRNAs almost always down-
regulate their targets and a positive effect corresponds to
higher expression in the Dicer KO. To test this, we looked at
the number of motifs with a positive effect in each method,
both overall and also compared to all motifs with a signifi-
cant P-value (P <0.01). We find that this was overwhelm-
ingly true across all motifs, particularly the simple linear
model and cWords. Sylamer returned the lowest number
of positive-effect motifs in those which are significant, at
only 58.64%, while MixMir showed the best enrichment for
positive-effect motifs in those which are found significant,
compared to the number positive over all motifs tested (Ta-
ble 2).

We reasoned that the overall very high enrichment of
positive effects across all motifs in the simple linear model
might be an artifact due to the inherent relationship be-
tween 3’ UTR length and motif count, because longer se-
quences have a higher probability of containing any given
motif, simply by chance. Thus, an mRNA that is repressed
due to a miRNA motif would also induce a similar correla-
tion for all other motifs found in that 3’ UTR. To test this
hypothesis, we included 3’ UTR length as a covariate to test
how it would affect the direction of the miRNA effect. A full
discussion of this 3’ UTR length effect can be found in the
Supplementary Note. Briefly, the 3’ UTR length covariate
strongly shifted the P-values of motifs found by the simple
linear models, which resulted in the PP plots for the simple
linear models being significantly less skewed (Supplemen-
tary Material). These results suggest that an additional rea-
son for the higher performance of MixMir compared to the
simple linear models is that MixMir implicitly corrects for 3’
UTR length using the relatedness matrix. After correcting
for 3’ UTR length, we found that the percentage of positive
effects across motifs remained high but not artificially high.
This is consistent with our biological intuition that while
most significant motifs should have positive effects, some
significant motifs will appear to have negative effects due to
the indirect effects that are not captured by our steady-state
microarray expression measurements. In any case, since we
found that the additional length covariate did not change
the rankings of the top 50 motifs in any of the linear meth-

ods, we did not use it for the comparisons between methods
presented above.

All methods perform well for most miRNA transfections, but
MixMir performs the best for let-7b

In addition to testing MixMir on our mouse Dicer-KO T
conv data, we also tested our algorithm on miRNA trans-
fection data from human cell lines, to demonstrate that our
results are not particular to the mouse microarray dataset.
We tested both microarray and quantitative protein expres-
sion data obtained from Selbach et al. (20) (see Methods),
and compared our results to those obtained from the same
data using miReduce, cWords, Sylamer and the simple lin-
ear model (Table 3). These data extend our analysis to a
very different technology, from microarrays to pSILAC,
and from mouse to human.

We found that nearly all methods were able to find the
exact seed sequence for nearly all of the quantitative pro-
teomics datasets, with the exception being that Sylamer
ranked the seed sequence of miR-30a fourth rather than
first. This is an expected result because unlike the Dicer-KO
scenario where many miRNAs were perturbed, the trans-
fection experiment perturbs one miRNA very strongly and
therefore is expected to produce much less noisy expression
data. Here our analysis demonstrates that the performance
of MixMir extends from the complicated T conv dataset
considered earlier to other simpler datasets as well.

In addition, we found that MixMir was able to find as
the most significant motif the exact seed sequence (or in the
case of let-7b, an offset seed sequence) of the transfected
miRNA for each of the microarray experiments at 32 h post,
while in several cases the other methods had difficulty do-
ing so. In particular, the other statistical methods had diffi-
culty identifying both seed and offset matches in the let-7b
experiment. No other method was able to identify the seed
or any offset matches in the let-7b experiment, with miRe-
duce ranking the seed sixth, and Sylamer and cWords per-
forming very poorly. We found that MixMir was able to find
many offset seed matches––all three offset seed sequences
were found generally within the top 10 motifs. Addition-
ally, we found motifs further downstream of the miRNA
seed sequence for let-7b (rank 17, miRNA nts 12–17), miR-
155 (rank 5, nts 4–9) and miR-16 (rank 16, nts 9–14), which
may be suggestive of non-canonical binding in these miR-
NAs (35,36). The center of miR-16 has also been suggested
to be involved in binding to AU-rich elements (37), although
this result has been challenged (38). Since miReduce is a use-
ful tool in experimental labs for validating that a transfec-
tion experiment actually worked and MixMir improves on
the other methods slightly for several experiments, this is an
additional practical use of MixMir as well.

MixMir predicts the miR-290 cluster as biologically most sig-
nificant in mouse ES cells

Next we analyzed new unpublished microarray data from
mouse Dicer-KO ES cells (Methods). We found that all
methods implicated the exact seed of the miR-290 cluster
(AAGTGC) as the top motif, except Sylamer, which ranked
it second (Table 4). It is known that the miR-290 cluster,
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Table 2. Percentage of significant motifs that have positive coefficients in the linear model

Method Number of significant motifs Percent of positive coefficients (%) Percent positive coefficients overall (%)

LM Bin 3726 90.97 99.34
Sylamer 885 58.64 NA
cWords2 3744 99.97 98.63
MixMir6 121 96.70 67.94

The number of significant motifs in the first column is determined by a cutoff of P <0.01. The percentage of motifs from the first column, which are positive
(i.e. the percentage of significant coefficients that are positive), is given in the second column. The third column is the percentage of all motifs that have
positive coefficients, not limited to those that have been found to be significant.

Table 3a. Comparison of MixMir with all other methods in miRNA transfection experiments, for pSILAC quantitative proteomics, and mRNA microarray
data

let-7b miR-1 miR-155 miR-16 miR-30a

MixMir 1[2], 2[1], 3[3] 1[2], 4[3], 11[1] 1[2], 2[3], 6[1] 1[2], 2[3], 3[1] 1[2]
miReduce 1[2] 1[2] 1[2] 1[2] 1[2]
Sylamer 1[2] 1[2], 4[3] 1[2], 12[3] 1[2], 11[3] 4[2]
cWords 1[2], 2[1], 3[3] 1[2], 2[3], 3[1] 1[2], 2[3] 1[2], 2[3], 1[2], 8[3], 16[1]
LM Bin NA 3[2] 1[2] NA NA

Table 3b.
let-7b miR-1 miR-155 miR-16 miR-30a

MixMir 1[3], 2[2], 5[1] 1[2], 2[3], 3[1] 1[2], 3[3] 1[2], 2[3], 17[1] 1[2], 17[3]
miReduce 6[2] 1[2], 10[3] 1[2] 3[2] 1[2]
Sylamer 19[2] 1[2], 2[3], 3[1] 1[2] 2[2], 4[3] 1[2], 4[1], 10[3]
cWords NA 1[2], 2[3], 3[1] 1[2], 2[3] 1[2], 2[3], 19[1] 1[2], 3[3], 5[1]
LM Bin NA 1[2], 2[3], 3[1] 1[2], 3[3] 11[2] 1[2], 3[3], 5[1]

For columns two and three, the first number is the rank of the true miRNA seed sequence, and the number in parentheses is the match position, i.e. ‘2’
represents an exact seed match, while ‘1’ and ‘3’ represent offset matches. We only show results for the top 20 motifs. ‘NA’ indicates that the true motif was
not found within the top 20 motifs. miReduce was run with a P-value cutoff of 0.5. a) Results for pSILAC data; b) results for microarray data.

Table 4. Rank of the exact seed and offset seeds of the miR-290 cluster of
miRNAs for each of the methods tested for microarray data obtained from
comparing Dicer-KO and WT ES cells

Microarray

MixMir6 1[2], 6[1], 7[3]
miReduce 1[2]
Sylamer 2[2]
cWords2 1[2], 6[3], 15[1]
LM Bin 1[2]

consisting of miR-290 to miR-295, has very high activity
in mouse ES cells, to the extent that replacing only this
miRNA cluster can rescue most of the Dicer-KO pheno-
type (24). Thus, our results are consistent with our results
for the single miRNA transfection experiments that on rela-
tively simple experiments where only a single miRNA dom-
inates the miRNA transcriptome of the cell, many meth-
ods are generally able to find the correct motif. However,
the motif analyses extend to offset seeds and non-canonical
miRNA targeting as well. MixMir was able to identify both
offset seeds for the miR-290 cluster in the top 10 predic-
tions, while the other programs found either 1 or 0 of the
offset seeds. We did not observe any obvious non-canonical
miRNA seeds among the MixMir motifs, a point we discuss
further below (Discussion).

MixMir identifies highly expressed miRNAs in mouse Dicer-
KO adrenal cortex samples

We further tested MixMir on a published set of adrenal cor-
tex Dicer-KO experiments, performed by Krill et al. (25).
The authors found that while mouse embryos with Dicer-
KO adrenal cortex cells developed normally up to E14.5,
at E18.5 they experienced total adrenal cortex failure. In
all they found 16 miRNAs that were downregulated in the
adrenal cortex of both E15.5 and E16.5 mice, including
miR-34c, miR-21, miR-10a and let-7d, which play a role in
tumorigenesis among other functions (25). They also pre-
sented lists of miRNAs specifically downregulated at each
stage.

We analyzed the mRNA microarray expression data (see
Methods) from both E15.5 and E16.5 embryos using the lin-
ear model, miReduce, Sylamer, cWords and MixMir. When
compared to the miRNAs that are downregulated at both
E15.5 and E16.5, we found that most methods were able
to find either an exact or offset seed match to let-7d ei-
ther as the first or second motif returned, with the excep-
tion of the linear model, which performed worse. Overall,
MixMir ranked true miRNA seeds higher than the other
methods in both E15.5 and E16.5 datasets (Table 5). Most
notably, MixMir found both miR-34b and miR-34c in the
top ranked motifs at E15.5, which no other method was
able to do. We also performed a separate analysis of motif
ranks and miRNA matches for E15.5 and E16.5 separately,
as some miRNAs were found to be significantly downregu-
lated at one stage and not at another––namely, there were
more such miRNAs at E16.5, as expected. We found sim-
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ilar results in this analysis, in particular that MixMir con-
sistently found biologically significant miRNAs, with per-
formance comparable to miReduce for both time points.
cWords and the linear model were comparable for E16.5
only (Supplementary Table S8).

Thus, testing the different methods on additional biologi-
cal datasets confirms the improvement of MixMir over pre-
vious methods. We believe that the most important use of
miRNA motif finding methods is to find a small number of
miRNAs that are most important in a particular cell type
for further experimental validation, since usually there are
very few miRNAs that are active in a cell type (24). There-
fore, we view the ability of MixMir to improve the predic-
tions by a small number of motifs to be a significant result
that is a feature of the biological properties of the miRNA
system.

DISCUSSION

In conclusion, we have presented MixMir, a novel method
for miRNA motif discovery from sequence and gene expres-
sion data. Our method corrects for pairwise sequence simi-
larities between 3’ UTRs that could confound a motif find-
ing algorithm in a way that is fundamentally different from
previous approaches to this problem (e.g. cWords, Sylamer).
We applied MixMir to a microarray dataset from WT and
Dicer-KO mouse CD4+CD25- T cells (T conv cells) col-
lected by one of the authors. Since Dicer is required for
miRNA biogenesis, we expect that Dicer-KO cells do not
contain any miRNAs and indeed this point was validated by
quantitative PCR for selected miRNAs, showing a greater
than 90% decrease in the knockout (unpublished results).
We found that MixMir was more accurate in finding active
miRNAs in these cells than three other similar published
methods, miReduce, cWords and Sylamer, as well as a sim-
ple linear regression model we used as a baseline for com-
parison. We validated our computational predictions using
two independent biological datasets consisting of miRNA
expression measurements in this cell type quantified by ei-
ther miRNA microarrays or single molecule imaging using
the nCounter system (Nanostring Technologies).

Importantly we found that miRNA activity was highly
but not perfectly correlated with miRNA abundance in the
cells, so it is not sufficient to simply measure miRNA expres-
sion levels in a cell type to determine the miRNAs that play
the largest role in shaping global gene expression in those
cells. For example, as in similar analyses for transcription
factors, miRNAs could be highly abundant but not highly
active in repressing mRNA expression due to their subcellu-
lar localization or the presence of competing RNA species
that could sequester the miRNAs from their mRNA targets
(39). Another possibility is that miRNAs may have differ-
ential efficiency of loading into the RISC complex or of tar-
geting mRNAs, and certain mRNAs may not be efficiently
repressed by miRNAs due to the presence of either stable
RNA secondary structures occluding the miRNA-binding
site or the binding of additional trans-acting factors. An
interesting biological finding from our analysis is that the
miRNAs that we found to be the most active in T conv cells
were in fact exactly the miRNAs that were more differen-
tially expressed between these cells and CD4+ CD25+ T

cells (T reg), based on previously published data from the
same cell type (22).

To confirm the performance of MixMir on additional
datasets, we tested MixMir against the other methods on
five miRNA transfection experiments in HeLa cells, using
both microarray and pSILAC quantitative proteomics data
previously published by Selbach et al. (20). In all transfec-
tion experiments, for the pSILAC data, nearly all methods
were able to find the exact seed sequence first, with the ex-
ception of the linear model, which failed to do so in three
cases, and Sylamer, which failed to do so for miR-30a (Ta-
ble 3a). In the microarray data, MixMir ranked the exact
seed sequence of the transfected miRNA first, with the ex-
ception of let-7b where it ranked it second. For the let-7b
experiment, all of the other methods performed much more
poorly than MixMir, demonstrating that MixMir gives a
significant improvement on at least one transfection exper-
iment.

We performed a similar analysis with mouse ES cell
Dicer-KO experiments, for which we also included previ-
ously unpublished microarray expression data, and mouse
adrenal cortex Dicer-KO experiments, using data obtained
from Krill et al. (25). In the former, we found again that
most methods we tested were able to identify the seed se-
quence of the miR-290 cluster known to be highly active
in ES cells but that MixMir additionally found more offset
seed sequences for this cluster; in the latter, we found that
MixMir either identified more true miRNAs or performed
comparably to the other methods depending on the time
point examined. Note that the adrenal cortex data might
be noisier than the other experiments because it was de-
rived from more heterogeneous primary tissue rather than
cell cultures.

These experiments demonstrate the general applicability
of MixMir on different technologies (microarray and pro-
teomics), species (human and mouse), cell types (cell lines,
primary T cells and adrenal cortex tissue) and experiments
of varying complexity, from relatively simple (miRNA
transfection or ablation of a single dominant miRNA clus-
ter) to relatively complex (perturbation of many miRNAs
in a tissue). Our analysis of HeLa cells also demonstrates
the utility of MixMir in a context where miReduce is often
used in practice––to verify that a miRNA transfection ex-
periment was carried out successfully.

In our miRNA targeting model, we made several assump-
tions similar to previous methods, like miReduce. First, we
searched over non-degenerate kmer motifs only. Although
this does not rule out the possibility of detecting degenerate
motifs, it probably biases our search toward non-degenerate
seed matches. Although we searched for several published
types of degenerate motifs such as G-bulge sites and im-
perfect sites in our data, we found only a few cases of such
sites. We note that many of the analyses of non-canonical
miRNA motifs have been performed on Ago HITS-CLIP or
PAR-CLIP data and therefore represent biochemical bind-
ing events of the miRNAs, which are not necessarily per-
fectly correlated with repression that is detectable at the
mRNA level. Similar observations hold for ChIP-seq data
on transcription factors where biochemical binding does
not necessarily produce transcription of the target gene.
Second, we searched over motifs in 3’ UTRs only. This



PAGE 11 OF 13 Nucleic Acids Research, 2014, Vol. 42, No. 17 e135

Table 5. Comparison of all methods in analyses of adrenal cortex Dicer-KO data for mouse embryos at stages E15.5 and E16.5

E15.5 E16.5

Rank miRNAs Rank miRNAs

MixMir 2 [1]miR-34b-3p,
[1]miR-34c-3p

1 [1]miR-34b-3p, [1]miR-34c-3p

5 [2]let-7d-5p,
[2]miR-202–3p

3 [2]let-7d-5p, [2]miR-202–3p

8 [3]let-7d 16 [3]let-7d-5p

miReduce 1 [3]let-7d-5p 1 [2]let-7d-5p, [2]miR-202–3p

Sylamer 2 [3]let-7d-5p NA
10 [2]let-7d-5p,

[2]miR-202–3p

cWords 1 [2]let-7d-5p,
[2]miR-202–3p

3 [2]let-7d-5p, [2]miR-202–3p

2 [3]let-7d-5p 9 [2]miR-107–3p

LM Bin 9 [2]let-7d-5p,
[2]miR-202–3p

3 [1]miR-34b-3p, [1]miR-34c-3p

13 [3]let-7d-5p 9 [3]miR-193a-3p

We present matches to miRNAs found to be experimentally downregulated in the Dicer-KO samples compared to WT in both E15.5 and E16.5 adrenal
cortex samples, as reported by the authors. The top 20 motifs returned by each method were analyzed. Column labeled Rank gives the rank of the motif
matched; miRNAs are preceded by the match position of the motif, with [2] indicating an exact seed match.

choice was based on previous results in the literature but
can be easily changed to examine other sequences, such as
coding sequences or 5’ UTRs, by users of MixMir. Third,
our model assumes that the miRNA regulatory effect is ad-
ditive, which is supported by previous evidence (1) but is still
an approximation to biological reality.

Our approach to the motif discovery problem borrows
an idea from GWASs, namely that cryptic relatedness be-
tween individuals acts as a confounding factor that causes
simple linear models to detect many false-positive associa-
tions. In GWAS, cryptic relatedness is captured by a kinship
matrix representing pairwise similarities between individu-
als. In the miRNA motif discovery problem, we considered
background nucleotide composition similarity, which may
affect miRNA binding in a variety of ways. It may affect
binding site accessibility (12), represent other cis-regulatory
sites for RNA-binding proteins or simply be a correlate of
paralogy––consider for instance ribosomal genes that are
very similar and have similar expression patterns (e.g. due
to similar transcriptional regulation) but are not affected by
miRNA targeting (40). Such signals can confound a motif
finder based on a simple linear model if sequence similarity
is not corrected. In particular, we found that the relatedness
matrix corrected for high AU content of the 3’ UTRs. This
observation could be due to the presence of AU-rich ele-
ments, which are known to be involved in mRNA regula-
tion, other AU-rich motifs for trans-acting factors or more
open secondary structures in the 3’ UTR that might in-
crease the efficiency of miRNA binding.

We constructed a relatedness matrix analogous to the
kinship matrix by representing kmer content similarity be-
tween 3’ UTRs, which implicitly accounts for 3’ UTR
length. We found that using k = 6 provided the most correc-
tion of the results, which is intuitive as this choice of k cor-
rects for motifs of the same length as the seed sequences for
which we are searching and synergistic interactions between

nearby miRNA-binding sites and RNA-binding protein
binding sites have been previously documented (12,41,42).
It is possible that we are also computing an approxima-
tion to the alignment score of the 3’ UTRs and that global
similarity of 3’ UTRs is more important than the presence
of short, 6nt motifs, but we consider this possibility un-
likely because very few pairs of 3’ UTRs should have any
meaningful sequence alignment at all. Most significantly,
MixMir6 was able to correctly implicate significant hex-
amer motifs associated with both known miRNAs and with
highly expressed miRNAs in our dataset, as indicated using
the area under the truncated receiver operating character-
istic. In particular, on the datasets we tested, MixMir per-
formed better than current state-of-the-art methods of mo-
tif discovery, miReduce, cWords and Sylamer (5–7) over the
entire range of sensitivity settings considered and on several
different types of data.

Notably, both cWords and Sylamer correct for 3’ UTR
length and compositional biases. Overall, cWords per-
formed better than Sylamer, but exhibited strong AU bias in
the datasets we examined. These results suggest that back-
ground nucleotide composition similarity can strongly af-
fect the ability of a linear model to uncover true motifs, but
also that the way in which we correct for background com-
position can dramatically alter the results. Unlike Sylamer
and cWords, MixMir utilizes the expression fold change val-
ues instead of just the ranks. Additionally, MixMir makes
pairwise comparisons of the entire 3’ UTR sequences, thus
performing a more direct comparison of sequence context,
rather than comparing motif versus background composi-
tion within each 3’ UTR like the other methods.

The MixMir software is freely available online, and uti-
lizes FaST-LMM, a fast MLM solver that can be obtained
freely online (see the MixMir README file with the soft-
ware for details). One limiting factor in our approach is the
total amount of 3’ UTR sequence available to construct
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large correlation matrices for long kmers. Increasing the
kmer length to 7mers or higher would make the correla-
tion matrix very sparse and difficult to estimate accurately.
Another drawback of MixMir is its relative computational
inefficiency: we exhaustively analyzed all 6mers but if we
wanted to exhaustively analyze all 7- or 8mers, the runtime
and memory requirements for FaST-LMM would make the
computation too inefficient for practical use in our expe-
rience. However, miReduce suffers from a similar problem
of computational inefficiency for values of k greater than
about 6, so this is not an issue unique to MixMir.

Finally, we note that our MLM approach is not limited to
solving the miRNA motif discovery problem. Like the RE-
DUCE software, MixMir can potentially also be applied to
other regulatory element motif detection problems, such as
transcription factor and RNA-binding protein motif pre-
diction, by varying the type of sequence input and gene
expression fold change input. For example, REDUCE was
originally applied to transcription factors, but was later ap-
plied to miRNAs in miReduce (7), RNA-binding proteins in
matrixREDUCE (43), degenerate transcription factor mo-
tifs in fREDUCE (44) and ChIP-chip data. We believe that
MixMir can be similarly applied to many of these types of
data and possibly also other data types such PAR-clip (45)
as well.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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